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The flow of an idealized granular material consisting of uniform smooth, but inelastic, 
spherical particles is studied using statistical methods analogous to  those used in the 
kinetic theory of gases. Two theories are developed: one for the Couette flow of 
particles having arbitrary coefficients of restitution (inelastic particles) and a second 
for the general flow of particles with coefficients of restitution near 1 (slightly inelastic 
particles). The study of inelastic particles in Couette flow follows the method of 
Savage & Jeffrey (1981) and uses an ad hoc distribution function to describe the 
collisions between particles. The results of this first analysis are compared with other 
theories of granular flow, with the Chapman-Enskog dense-gas theory, and with 
experiments. The theory agrees moderately well with experimental data and i t  is 
found that the asymptzotic analysis of Jenkins & Savage (1983), which was developed 
for slightly inelastic particles, surprisingly gives results similar to the first theory even 
for highly inelastic particles. Therefore the ' nearly elastic ' approximation is pursued 
as a second theory using an approach that is closer to the established methods of 
Chapman-Enskog gas theory. The new approach which determines the collisional 
distribution functions by a rational approximation scheme, is applicable to general 
flowfields, not just simple shear. It incorporates kinetic as well as collisional 
contributions to the constitutive equations for stress and energy flux and is thus 
appropriate for dilute as well as dense concentrations of solids. When the collisional 
contributions are dominant, it predicts stresses similar to  the first analysis for the 
simple shear case. 

1. Introduction 
Several studies of the flow of granular materials have been based on the assumption 

that, under certain flow conditions, collisions between the particles provide the 
principal mechanism for the transport of properties such as momentum and energy 
(Ogawa, Umemura & Oshima 1980; Shen 1981; Savage & Jeffrey 1981; Jenkins & 
Savage 1983). This assumption naturally suggests an  analogy with the Chapman- 
Enskog kinetic theory of dense gases (Chapman & Cowling 1970), and in fact certain 
of the statistical methods developed for gases have been used in the analysis of 
granular flow. Thus, to continue the analogy, we may speak of kinetic theories for 
granular flow. Savage & Jeffrey (1981) characterized their analysis by the fact that 
it applied to high shear rates; however, the term kinetic theory used here is more 
descriptive of the underlying assumptions. 

Although the various theories have in common the assumption that collisions are 
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the principal transport mechanism, each theory contains assumptions not shared by 
the others. Comparisons between them and with experiments are still possible, 
however, and are helpful in deciding upon ways in which the theories might be 
improved. Before making these comparisons, the theory of Savage & Joffrey (1981) 
must be completed by allowing the granular particles to be inelastic. Here we have 
assumed that they possess conventional coefficient of restitution P and calculated 
the energy dissipated as a result of collisions, so that the ratio of the velocity 
fluctuations to the mean flow - left undetermined in Savage & Jeffrey (1981) - can 
be found as a function of e .  

I n  comparing the theories with each other, one sees that a merit of the Savage & 
Jeffrey treatment is its applicability for all values of e ,  while its weakness is its 
restriction to a mean simple shear flow. This is in contrast with the Jenkins & Savage 
(1983) treatment, which applies to any type of flow, but was developed for values 
of e near 1 (i.e. slightly inelastic particles); and even more in contrast with 
Chapman-Enskog theory, which applies only for e = 1 .  

Given that the aim is to produce constitutive relations for a general granular flow, 
consideration only of simple shear may seem to be too restrictive. However, we can 
use the analysis of the simple shear case, to make some assessment of the 1 - e  4 1 
approximation made by Jenkins & Savage (1983). The point of interest is that, to 
approximate their collision integrals, Jenkins & Savage followed the usual approach 
of kinetic gas theories and obtained asymptotic solutions corresponding to the case 
of small gradients of mean-flow quantities, quantities such as mean velocity and 
fluctuation kinetic energy. For the case of simple shear, this corresponds to small 
values of the Savage & Jeffrey R-parameter, where R = ((T du/dy)/(C2)f was defined 
as the ratio of the characteristic mean shear velocity to the r.m.s. of the velocity 
fluctuations. In  the context of inelastic particles this is equivalent to assuming 1 - e 4 1 .  
These kinds of asymptotic approaches, when used in kinetic gas theory, are found 
to give surprisingly accurate predictions for the transport coefficients. Typically, in 
these applications the temperatures are ‘high ’ and the velocity gradients are ‘small ’ 
in the sense that a parameter analogous to R is small compared with unity. On the 
other hand, for common granular flow systems, the validity of the assumption of R 4 1 
is not so clear. These systems are extremely dissipative. The velocity fluctuations do 
not maintain themselves, as would the temperature of a gas in an insulated vessel. 
I n  the absence of a mean rate of deformation field or some input of fluctuation kinetic 
energy to drive these velocity fluctuations, they will rapidly decay. Savage & Jeffrey 
(1981), on the basis of some comparisons of their predicted stresses with Couette- 
flow experiments, suggest that  R is not small, but about one or two. The numerical 
modelling of Campbell & Brennen (1982) and the analysis of Shen (1981) corroborate 
this estimate of R. For such values of R, the pair-distribution function used by 
Jenkins & Savage (1983) can become negative and their small gradient asymptotic 
solutions may be subject to doubt. Thus there is the obvious question of how large 
R can be, before the asymptotic analyses of collision integrals, as done by Jenkins 
& Savage (1983), begin to depart significantly from more exact evaluations. This is 
one of the concerns of the present study. 

The paper begins with a derivation of the integral forms for the constitutive 
equations, correcting some results given by Jenkins & Savage (1983). Since the 
analysis of general deformations is so complicated, attention will bc restricted in the 
first part of the present paper to the Savage & <Jeffrey case of a simple shear flow 
with no fluxes of fluctuation energy. The collision integrals for the stresses and rate 
of energy dissipation per unit volume are evaluated for arbitrary values of both R 
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and the coefficient of restitution e ,  both numerically and by using series expansions 
combined with other transformations. These results are compared with experimental 
measurements of Savage & Sayed (1980) and predictions of the granular-flow analyses 
of Jenkins & Savage (1983), Ogawa et al. (1980), Shen (1981) and the Chapman-Enskog 
dense-gas analysis (Chapman & Cowling 1970). The conclusion is that the range 
of e for which the results of the ‘linearized’ (small-R) theory are accurate is 
surprisingly large, and an extension that calculates the probability distributions 
rather than guesses a t  them is worth undertaking. Such an analysis is developed in 
the second part of the paper. Comparisons are made with the simpler ad hoc analysis 
of Jenkins & Savage (1983) which assumes simple expressions for the singlet- and 
pair -distribution functions. 

2. Integral forms for the constitutive equations for stress, flux of 
fluctuation energy and dissipation 

The procedure we shall use for the development of the so-called hydrodynamic or 
Jluid-mechanical equations and the integral forms for stresses, energy fluxes and the 
collisional rate of energy dissipation per unit volume is similar to the approach 
employed in the kinetic theory of dense fluids (Chapman & Cowling 1970; Ferziger 
& Kaper 1972). As noted previously, Savage & Jeffrey (1981) and Jenkins & Savage 
(1983) have considered the flows of granular materials composed of smooth, hard, 
spherical particles in this context. Some manipulations of the collisional integrals in 
the paper of Jenkins & Savage (1983) are inappropriate and some higher-order terms 
were neglected. Although these oversights did not affect the end results for the 
constitutive equations of Jenkins & Savage (1983), they would cause errors in the 
more detailed analysis given in the latter part of the present paper. 

I n  the present section we provide a more careful derivation of these collisional 
integrals for the case of smooth, hard, inelastic particles of uniform diameter. Those 
steps that closely follow the papers of Savage & Jeffrey (1981) and Jenkins & Savage 
(1983) are only outlined to the extent necessary to define terminology. 

We consider a fixed volume element dr centred at r that  contains n(r, t )  dr particles, 
where n is the number density of particles. The ensemble average of the single-particle 
quantity $ is defined as 

(2.1) ($) = t j$f (V, c;  t )  dc, 

where f (l) (r, c;  t )  is the usual single-particle velocity distribution function defined such 
thatffl)  6c is the differential number of particles per unit volume with velocities within 
the range c and c + 6c. Similarly, a complete pair-distribution function 
f2)(rl, c,; r2, c2; t )  may be defined such that f(2)(rl, c,; r2, c 2 ;  t )  6r, 6r, 6c, 6c2 is the 
probability of finding a pair of particles in the volume elements 6rl, 6r2 centred on 
the points rl,  r2 and having velocities within the ranges c, and C, +6c1, and C, and 
c2+6c,. The rate of change of (n$) may be expressed as (Reif 1965) 

(2.2) 
a 
at 
- (n$) = n(D$> - V.<nc$> + $ c ,  

where 

F is the external force acting on a particle of mass rn, and 
of increase of the mean of $ per unit volume. 

is the collisional rate 
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To obtain more explicit expressions for the collisional term #c ,  we consider binary 
collisions between hard, smooth but inelastic particles of uniform diameter u. At the 
instant of a collision between particles labelled 1 and 2 we take the centre 0, of the 
second particle to  be located a t  position r and the centre 0, of particle 1 to be a t  
r -ak ,  where k is the unit vector along the line of centres from 0, to 0,. In time 6t 
prior to the collision, particle 1 moved through a distance cI2 6t relative to particle 2, 
where c12 = c,-cc,. For a collison to occur within Ft, then, 0, must lie within the 
volume a26k(c,, * k )  6t. 

The probable number of collisions such that 0, lies within the volume 6r and in 
which cl, c, and k lie within the ranges Fc,, 6c, and 6k is 

u2(c , ,~k ) f (2 ) ( r - -k , c l ;  r ,  c,;t)6k6c16c,6r6t. 

During a collision, particle 2 gains a quantity $;-$, of $, where primed and 
unprimed quantities refer to  values after and before the collision. Considering only 
particles that are about to  collide (i.e. taking c,;k > 0), we find that the collisional 
rate of increase for the mean of $ per unit volume 

($;-$,) (c , , -k) f (2) (r - -k ,  c,;r,c,;t)dkdc,dc,. (2.4) 
c 1 2 . k  > 0 

This may be put in a more convenient and physically significant form. Interchanging 
the roles of the colliding particles by interchanging the subscripts 1 and 2 and 
replacing k by - k ,  (2.4) may be written as 

$c = u2j (c,,’k)f(2)(r,c1;r+ak,c2;t)dkdcldc,. (2.5) 

After expanding the pair-distribution function f @ ) ( r -  ak ,  c, ; r ,  c,; t )  in a Taylor series 
and rearranging, we may write 

c l z ’ k  > 0 

f ( , ) ( r ,  c, ; r + ak,  c, ; t )  

= f @ ) ( r  - ak,  c, ; r,  c, ; t ) 

1 1 
2 !  3!  + [ a k * V - - ( a k - V ) 2 + - ( a k . V ) 3 +  ...I f 2 ) ( r ,  cl; r+&, c z ;  t ) .  (2.6) 

Substituting (2.6) in (2.5) and adding this to (2.4), we obtain 

9, = -v-e+x, (2.7) 

where the collisional transfer contribution 

1 i 
3!  

“‘j ( $ ~ - - $ , ) ( c ~ , - k ) k  1 - i a k * V + - ( a k * V ) 2 + . . .  e=-- 

xf( , ) ( r ,  c1 ; r + ak,  c, ; t )  dk dc, dc,, (2.8) 

I c 1 2 . k  z 0 

and the ‘source-like’ contribution 

X=y ($L+$i-$z-$l) (c , ,*k) f (2) (r -uk ,  c l ; r ,  c,; t)dkdc, dc,. (2.9) 

Note that, when $ is a summational invariant, x is zero. When $ is taken to be the 
translational kinetic energy @c2, then x = - y ,  where y is the rate of energy 

“ ‘ J c I 2 . k  z 0 
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dissipation per unit volume due to inelastic collisions of the smooth particles. Also 
note that to first order 

8 x - 1  3 ($; - $1) (c12. k )  kf(,)(r-:ak, C, ; r + i ~ k ,  cZ ; t )  dk dc, dc,, 
S,,, .k>, 

(2.10) 

which is the same expression as given by Chapman & Cowling (1970, 516.4) for the 
collisional transfer of ‘molecular’ properties. Equations (2.2), (2.9) and (2.10) have 
been derived previously by Condiff, Lu & Dahler (1965) using slightly different 
arguments. The expression for 8 given by (2.8) differs from the corresponding 
expression of Jenkins & Savage (1983); the difference is due to an incorrect spatial 
shifting off(,) and the neglect of some higher-order terms in Jenkins & Savage (1983). 
Because of the simple form used by Jenkins & Savage forf(2), their final integrated 
expressions for the constitutive equations are no different from those that are 
obtained using (2.8) and (2.9). However, for more general forms forf@) there would 
be differences. It is worth mentioning that Brush (1972, pp, 72-76), in his book on 
the history of kinetic theory, has described the controversy concerning the appropriate 
form for Boltzmann-like equations and the collisional-transfer contributions for dense 
fluids in which the forms used by Enskog were first rejected and then reinstated. The 
present correction is more pedestrian, but nevertheless analogous to the issues 
described by Brush. 

Considering the particles to be smooth but inelastic with a coefficient of restitution 
e (Jenkins & Savage 1983), one finds that the component of relative velocity c,, in 
the direction of k is changed during a collision such that 

k-c;, = -e(k*c,,). (2.11) 

The translational kinetic-energy change during a collision is 

AE = $[(c? + ci2) - (c; + c!)] (2.12) 

= -$(l - e 2 )  (k.c,,)2. 

By taking @ to be m, mc and ! p c 2  in (2.2) and (2.7)-(2.9) we obtain the usual 
hydrodynamic equations 

(2.13) 

(2.14) 

(2.15) d T  
dt 

$p-- = -p :  wu- w - q -  y .  

In  these equations p = mn = vpp is the bulk mass density, v is the bulk solids fraction, 
pp is the mass density of an individual particle, u = (c) is the bulk velocity, p is the 
pressure tensor, y = - x(&c2) is the collisional rate of dissipation per unit volume and 
b is the body force per unit mass. Finally, tT = $(C2) is the specific kinetic energy 
of the velocity fluctuations (or for short the translational fluctuation energy) where 
C = c - U, and q is the flux of fluctuation energy. The quantity T has become known 
as the granular temperature. 



228 C. K.  K .  Lun, S.  B. Savage, D. J .  Jeffrey and N .  Chepurniy 

The total pressure tensor p is the sum of a kinetic part 

Pk = P<CO 

p, = e(mc). 

q -1 k - ZP<CZC> 

4c = e(irncz). 

and a collisional part 

Similarly, the flux of fluctuation energy q is the sum of a kinetic part 

and a collisional part 

(2.16) 

(2.17) 

(2.18) 

(2.19) 

3. Couette flow of inelastic particles 
I n  this section we specialize to the case of a mean simple shear flow having no 

gradients of fluctuation kinetic energy. This is the case considered by Savage & Jeffrey 
(1981), and we use the pair-distribution function they proposed. Although their 
distribution function applies only to shear flow, i t  has the advantage that it does not 
require the quantities R or e to  fall within any particular range. This same flow has 
been investigated theoretically by Ogawa et al. (1980) and Shen (1981); also, it 
probably is a moderately good idealization of the shear-cell experiments of Savage 
& Sayed (1980). Comparisons of the various granular-flow theories with experiments 
and the Chapman-Enskog dense-gas analysis (Chapman & Cowling 1970) will give 
some ideas of their merits and shortcomings. 

3.1. Analysis 
We consider the case of a simple shear flow (constant shear rate) u = u ( y ) e ,  of 
uniform bulk density p and uniform granular temperature T. I n  this flow q = 0, and 
the translational fluctuation energy equation (2.15) reduces to a simple balance 
between the shear work and the rate of dissipation 

du 
p,,-+ y = 0. 

dY 

I n  order to evaluate the stress tensor p and the rate of dissipation y = -x($mc2) we 
shall make use of' the complete pair-distribution function assumed by Savage & 
Jeffrey (1981). We write this down using their parameter R, or equivalently the 
temperature T = +(v2>, and only later derive the expression for the parameter R in 
terms of e by appealing to (3.1). To be consistent with most of the other granular-flow 
theories we now use the symbol u to designate the peculiar velocity, which in the 
previous section was specified as C.  The coordinate system is that defined by Savage 
& Jeffrey (1981, figure 4) with the modification that 8 here will be in-8 as defined 
there. Thus if k is the unit vector along the line of centres, we employ 

2T g ( u )  erfc (@) exp f(2)(rl,cl;r2,cz;t) = - 
( ~ T T T ) ~  
nz 

where 
gkk:Vu 4 3  . 

= - R s m 9 c o s 8 c o s ~ ,  2T: 2 
@ =  

and g o ( u )  is the Carnahan-Starling (1969) expression for the radial distribution 

(3.3) 
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Recent computer experiments by Campbell (1982) show a similar form for the 
collisional distribution function a t  low concentration ; however, he finds a distribution 
function that contained spikes a t  higher concentrations. 

For a collision between two identical, smooth, inelastic, spherical particles of 
diameter cr and mass m, the conservation of linear momentum requires that the 
velocities of the particles before collision C, and c2 are related to those after collision 

mc; = mc, - J ,  ( 3 . 4 ~ )  

mc; = mc,+ J ,  (3.4b) 

by 

where J i s  the impulse of the force between the particles. The coeflicient of restitution 
e is introduced through (2.11), allowing us to eliminate J f rom (3.4) to obtain 

( 3 . 5 ~ )  

(3 .5b )  

Thus from the general expressions (2.10) and (2.17) with $ = mC, we see that the 
expression for the stress tensor is modified from Savage & Jeffrey (1981) only by the 
factor f( 1 + e )  : 

( k . C 1 2 ) 2 k k f ( 2 ) ( r - ~ a k , c l ;  r++ok, c,;t)dkdc,dc,. 
k * c , ,  > 0 

(3.6) 
s p = :(i+e)ma3 

Similarly, using (2.9), we obtain 

( k . ~ , , ) ~ f ( ~ ) ( r - c r k ,  cl;  r,c,;t)dkdc,dc,. (3.7) s k ' q z  > 0 
y = Q( 1 - e2) mcr2 

We non-dimensionalize the stress and energy dissipation by 

(3.9) 

where p = nm and is the bulk solid density. We now retrace the steps taken in Savage 
& Jeffrey (1981) to simplify the integrals, with the exception that 9 will here equal 
$-9 as they define it. We obtain 

2=-+ m 2x 

Y* = * j, s, ~5"er fc(0)exP(- - (6+@)2)  cos9d9dg,d5, (3.11) 

where 5 = ?jk.c12 T-4, and Q, was introduced in (3.2). 
The numerical evaluation of (3.10) as a function of R is unchanged from Savage 

& Jeffrey (1981), because all new factors have been incorporated in the non- 
dimensionalization, and the evaluation of (3.11) for y* is similar. The simple and 
smooth shapes taken by all the non-dimensional functions allows us to express all 
the results using simplr mimic functions which predict the numerical results to within 
3 significant figures for all values of R. They are chosen by evaluating the integrals 
in (3.10) and (3.11) asymptotically for small and large values of R and then joining 
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these extremes through the use of transformed R-variables. We define 4 subsidiary 
variables 

(3.12) 

where n = 1 , 2 , 3 , 4  and the dn will be chosen separately for each function. A functional 
form that reproduces the series expansion for pzz  correct to O(R4) is 

4 6 ( 4 + ~ )  6 ( 4 - ~ )  p;z = p* = -+---- 
yy 3R2 35n 35n pl ,  

and if d: = 858(4-n) the correct value of is obtained as R +  03. Similarly, 

4 2 ( 4 + ~ )  2 ( 4 - ~ )  * '"- 3R2 35n 35n p27 

(3.13) 

(3.14) 

where d i  = v ( 4 - n ) ,  to  obtain & as R +  co. Next a functional form that is correct 
to O(R3)  for pzg  is 

(d3  [12 + (d3 - 6) p, - (w: -9, +:) &I, 
P z y  = - 5( 3n)f 

(3.15) 

and to  obtain - 3 2 1 3 5 ~  as R-t co we need d,  = 20.6474. Similarly, a functional form 
that is correct to  O(R3) for y* is 

y* = w! [4 + (v, - 6) p, + (&& -9, + pi + ( - jj&& +&& - $4, + 2) pi ] ,  
( 3 0  

(3.16) 

and to  obtain 8/35n as R +  00 we take d, = 0.888348. 

3.2. The relation between R and e 
From (3.1), (3.8) and (3.9) we obtain the equation 

e = 1 P* 
2 y* ' 

(3.17) 

from which we obtain e as a function of R. In  physical terms, of course, we think 
more of R as a function of e .  The relation is plotted in figure 1 together with data 
from $3.3. It can be seen that, although Savage & Jeffrey (1981) anticipated values 
of R and 0 and infinity, i t  is only for R > 2.73 that  physically possible values of e are 
obtained. This result points out the simplicity of the dissipation mechanism assumed 
in the present model. It is obvious that in a granular material there are many 
additional dissipation mechanisms that have been omitted here. Thus one would 
expect that the results in figure 1 represent a low estimate of R for any given value 
of e .  I n  particular, the experiments of Bagnold (1954), which probably achieved 
much higher values of R, had a suspending medium of the same density as the 
particles, which would have changed the dissipation mechanisms greatly from the 
one considered here. 

3.3. Comparisons with other theories and experiments 
In this section we shall make comparisons of the results just obtained with predictions 
given by the recent granular-flow theories put forth by Ogawa et al. (1980), Shen 
(1981) and Jenkins & Savage (1983). All of these are microstructural theories based 
upon collisional transfer of momentum and energy, but they involve different 



Kinetic theories for granular flow 231 

1 

0.8 

0.6 

0.4 

0.2 

e O  

-0.2 

-0.4 

-0.6 

-0.8 

-1 
0.1 0.3 1 3 10 30 

R = o 1 duldy I / ( vz ) :  

FIGURE 1. Coefficient of restitution e that is required to obtain a specified value of R predicted by 
various theories for the case of simple shear. The curves for the present $3 theory and for Jenkins 
& Savage (1983) are the same for all values of v. The two curves for Ogawa et al. (1 980) and for 
Shen (1981) are given for v = 0.5; they differ in the assumed value for v*, the ‘maximum packing’. 
_ _  , V* = 0.64; V* = 0.74. 

assumptions about the material properties and use different methods for the 
statistical averaging and evaluation of the collisional integrals. In addition, they each 
require further manipulation to recast them in a form suitable for comparison with 
the present work. The predictions of stresses for the case of simple shear are also 
compared with experimental results for the annular shear-cell tests of Savage & Sayed 
( 1980) and with the Chapman-Enskog dense-gas kinetic theory (Chapman & Cowling 
1970). 

3.3.1. Ogawa, Umemura & Oshima (1980) 
Ogawa et al. (1980) determined the stress tensor and the rate of energy dissipation 

for the flow of adhesive, rough, inelastic spherical granular particles by employing 
a simple statistical model of particle collisional interactions. I n  their model the 
friction of the particles was considered but particle rotations and rotary inertia were 
ignored. Furthermore, the fluctuations were assumed to be random and isotropic, and, 
although the existence of fluxes of fluctuations were recognized, such fluxes were later 
neglected in the determinations of the constitutive equations for the stresses and rate 
of energy dissipation. 
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Each particle was considered to be inside an imaginary collision sphere of radius 
b which represented the ‘wall ’ being set up by the neighbouring particles. Multiplying 
the number density of particles by the change in kinetic energy per collision and the 
estimated collision frequency of magnitude ( v 2 ) i / ( 2 b  - (T) gave the total rate of change 
of fluctuation energy per unit volume, which was then equated to the rate of work 
done by stresses and the rate of energy dissipation per unit volume. By comparing 
the forms of both sides, Ogawa et al. proposed the following constitutive equations 
for the stress tensor and the rate of energy dissipation yo : 

P (V2)P 

4( 1 - ( v / v* ) i )  b ’ Yo = -KO 

(3.18) 

(3.19) 

where V* was said to correspond to the ‘packed state’ of granular materials, 
Dij = $(ui, + uj, is the rate-of-strain tensor, and Sij is the unit tensor. i n  (3.18), the 
sign convention of Ogawa et al. for thc stress has been changed to conform to that 
used here, in which compressive stresses are positive. For the case of cohesionless and 
smooth particles, the Ki are given as 

KO = --( l - e z ) ,  K ,  = - $ e ( 3 + ~ ) ,  K ,  = $( l+e )z ,  (3 .20a,  b ,  c )  

and K3 = 0. 

express them in terms of the parameter R, after noting that 
We now consider the case of simple shear flow, non-dimensionalizc p and y o ,  and 

Thus 

where 

(3.21 a ,  b )  

(3.22) 

(3 .23)  

(3.24) 

(3.25a) 

(3.253, c )  

and pp is the mass density of an individual solid particle. 
The R-dependence of the stresses p and dissipation rate yo resembles the R- 

dependences of the first terms in the small-R solutions for p and y given by 
(3.13)-(3.16). Unfortunately, the stresses of both theories depend differently on the 
coefficient of restitution e ,  and we cannot compare them directly until a relationship 
between e and R is established €or the theory of Ogawa et al. However, we may 
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FIGURE 2. Solids concentrat,ion functions of various theories in terms of solids fraction v. 
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compute the non-dimensional rate of energy dissipation if we divide (3.19) by a 
normalizing concentration function defined as 

$.,(v) = v2g0(v). (3.26) 

Taking the solids fraction v to be 0.5 for the sake of comparison and v* = 0.64 for 
a randomly packed mass of particles, the first term of the small-R solution of the 
present theory gives y* = 1.303RP3 from (3.16), whereas the theory of Ogawa et al. 
yields 

= 0.648RP3 Yo 
p p  u2go ~ P ( d u / d y ) ~  (1  - e2) Yo* = 

(notep = vpp). If we take the packed state in the theory of Ogawa et al. to correspond 
to a regular array of closest-packed spheres, then v* = 0.74 and yo* = 0.398RP3. This 
comparison shows that the rate of energy dissipation of Ogawa et al. is about t or 
f of that of the present theory for small R, depending on how their 'packed state' 
is interpreted. Since they did not specify the value v* they had in mind, both values 
of v* of 0.64 and 0.74 will be used in their theory for the comparison that follows. 

Equating the rate of work done by stresses to the energy dissipation per unit volume 
for the case of a steady simple shear flow, we obtained a relationship between R 
and e :  

(3.27) 

Equation (3.27) is plotted in figure 1 ; the variation of R with e has the same general 
shape as that given by equation (3.17) of the present theory. 
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FIGURE 3. Variation of non-dimensional normal-stress component p &  of various theories with the 
ratio of characteristic mean shear velocity to fluctuation velocity R for the case of simple shear. 
The designations of the various theories are described in the caption to figure 1. 
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FIQURE 4. Variation of non-dimensional shear-stress component p& of various theories with the 
ratio of characteristic mean shear velocity to fluctuation velocity R for the case of simple shear. 
The designations of the various theories are described in the caption to figure 1. 
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FIGURE 5.  Variation of non-dimensional normal-stress component p&, of various theories with the 
coefficient of restitution e .  The designations of the various theories are described in the caption to  
figure 1. 

Now we may compare the stresses by dividing (3.22) and (3.23) by (3.26): 

where 

(3.28) 

(3.29) 

(3.30), (3.31) 

The functions $2 and k3 given by (3.25) associated with the normal stresses, shear 
stresses and the rate of energy dissipation per unit volume respectively are shown 
in figure 2 together with $.,(v) of the present theory given by (3.26). The variations 
with concentration v are rather different. Using the R versus e relationship of (3.27), 
we may determine the stresses. The variations of the normal and shear stresses in 
terms of R and e are shown in figures 3-6 together with those of the present theory. 
The stresses of Ogawa et al. are much lower than the present predictions. 
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FIGCRE 6. Variation of non-dimensional shear-stress component p:, of various theories with the 
coefficient of restitution e .  The designations of the various theories are described in the caption to  
figure 1 .  

3.3.2. Shen (1981) 
Shen (1981) used a statistical model similar to that of Ogawa et al. (1980) and 

derived her constitutive equations for rough, inelastic spherical particles including 
interstitial-fluid drag effects. The case of simple shear of granular materials was 
considered and assumptions similar to those of Ogawa et al. (1980) were made. The 
particle velocity fluctuations were assumed to be isotropic and rotary inertia effects 
were neglected. The stresses were determined by letting 

where p i  is the average number of particles per unit area normal to the ith coordinate 
direction, AMj is the average j t h  component of the momentum transfer per collision 
and f is the collisional frequency of a particle inside that unit area. A similar 
formulation for the stresses was originally used by Bagnold (1954). The rate of energy 
dissipation per unit volume was given by 

y = nFE, (3.33) 

where n is the number of particles per unit volume, F is the collisional frequency of 
a particle and E is the energy loss of each particle per collision. The magnitude of 
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the collision frequency F was estimated in a manner similar to that of Ogawa et al. 
(1980) by writing 

(3.34) 

where S is the mean separation distance of the particles. 
In  order to simplify the analysis of the dynamics of particle collisions, a number 

of approximations were made. The main one is that, R( 1 + l / h )  4 1, where h = g / S  is 
defined as the linear concentration of the particles. This eliminated the need to 
account for certain of the effects of anisotropic collisions. Another important 
assumption is that tan-l,uP(l + e )  + 1 ,  where ,up is the coefficient of friction of the 
particles. For the purposes of comparison with the present theory, we consider Shen’s 
theory for the special case of negligible interstitial-fluid effects and smooth particles. 
The stresses and the rate of energy dissipation then may be written in terms of the 
parameter R as 

(3 .35) ,  (3.36) Pxx = Pyy = PZU P’sy - - P,x, 

(3 .37)  

(3.38) 

(3.39) 

(3.40) 

The above stresses and rate of energy dissipation per unit volume have the same 
form of R-dependence as those of Ogawa et al. and the first terms of the small-R 
expansions for p and y of the present theory. However, the concentration functions 
associated with the stresses differ from those of Ogawa et al. A formula relating R 
and e may be established easily by using the balance of rate of shear work and energy 
dissipation 

(3.41) 

This equation is shown together with the previous ones in figure 1 ; R has a ‘physical ’ 
upper limit of about 2 when e = 0. 

Computations for the stresses in terms of R and e are performed in a manner similar 
to those of Ogawa et al. (1980) and are shown in figures 3-6. The magnitudes of Shen’s 
stresses are higher than those of Ogawa et al. ; however, they are still considerably 
lower than those of the present theory. 

3.3.3. Jenkins & Savage (1983) 
Jenkins & Savage (1983) have considered the flow of smooth, nearly elastic 

spherical granular materials. Their theory was derived for general deformations but 
is an asymptotic analysis for small deformation rates (small R for the case of simple 
shear). Their pair-distribution function f (2) and single-particle distribution function 
f(l) were assumed to have the same forms used in the present theory. A collisional 
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pair-distribution function g(r,, r2) was assumed on the basis of dimensional 
arguments and small deformation rates to be 

(3.42) 

where a is some (undetermined) constant. If a is taken to be unity, their g(r l ,  r2) is 
essentially the first-order expansion for small R of the g(rl, r2) of the present theory 
which was used previously by Savage & Jeffrey (1981). By using the complete pair 
distribution functions linearized for small deformation rates, the integrals for the 
collisional flux of fluctuation energy qc, the collisional stress tensor pc and the rate 
of energy dissipation per unit volume y were evaluated to yield 

qc = - KVT, (3.43) 

pc = (KG-'(nT)$ -$(2 + a )  t r  D)  /-- (2 -k tL) 0, (3.44) 
2K 

5 

where 

K = 2vg,(v) (1 +e)pa - , (3; 
(3.45) 

(3.46) 

and / is the unit tensor. 

qc = 0, the constitutive equations with a = 1 yield 
Considering the case of simple shear u = u ( y )  ex with no fluctuation gradients, i.e. 

(3.47) 

(3.48) 

(3.49) 

which are exactly the first terms of the small-R expansions of the present theory. The 
relationship between the parameter R and the coefficient of restitution e is found to 
be 

R2 =Y(l -e) ,  (3.50) 

and is plotted along with the others in figure 1. It shows the same functional 
behaviour as that of Shen (1981), but its upper bound of R = 1.83 a t  e = 0 is lower. 
The non-dimensional stresses given by (3.47), (3.48) and (3.50) are plotted against 
both R and e in figures 3-6. I n  the figures showing stresses versus R, there are 
noticeable differences in the magnitudes of the stresses of Jenkins & Savage and those 
of the present theofy. In the plots of stresses versus e, the magnitudes of the shear 
stress of Jenkins & Savage and that of the present theory are too close to be 
distinguished on the graph, while small differences in the normal stresses are 
detectable a t  lower e .  
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FIGURE 7. Variations of non-dimensional normal stress with solids fraction v for the case of simple 
shear. Comparison of various theories with experiments of Savage & Sayed (1980). 

3.3.4. Comparison with experimental data 
Unfortunately, there are almost no experimental stress, strain-rate data that 

can be used to test in detail the validity of the various theories mentioned in 
$53.3.1-3.3.3. I n  fact, the only experimental data yet presented that deal with dry 
granular materials sheared a t  high rates are the data from the annular-shear-cell tests 
of Savage & Sayed (1980). The range of concentration v tested was roughly between 
0.44 and 0.54, which is considered to be sufficiently high that the kinetic or diffusional 
contributions to the stresses are negligible. From this standpoint a t  least these data 
are appropriate for comparison with theories concerned with collisional transfer of 
momentum and energy. Some of the materials used were 1 .O mm diameter polystyrene 
spheres of specific gravity 1.095, and 1.8 mm diameter ballotini spherical glass beads 
of specific gravity 2.97. Data from these materials are shown in figures 7 and 8. 

Values for the material properties such as coefficient of restitution must be specified 
in order to calculate the stresses in each of the four theories. Unfortunately, the values 
of e were not measured in the experiments of Savage & Sayed (1980), and we have 
made the theoretical calculations for a range of representative values of e .  For the 
theories of Ogawa et al. (1980) and Shen (1981) with the coefficient of friction taken 
to be zero, only computations of e = 0.9 are shown, whereas, for the theory of Jenkins 
& Savage (1983) and the present analysis, calculations of e = 0.95, 0.9 and 0.8 are 
shown in figures 7 and 8. These values of e from 0.95 to 0.8 are probably in the 
appropriate range for the glass beads (see Goldsmith 1960). Little information about 
the value of e for the polystyrene beads is available: but it is probably lower than 
that for the glass beads. Since stresses increase with increasing values of e as predicted 
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FIauRE 8. Variations of non-dimensional shear stress with solids fraction v for the case of 
simple shear. Comparison of various theories with experiments of Savage & Sayed (1980). 

by the present model, one might anticipate that the stresses developed by the glass 
beads would be higher than those developed by the polystyrene beads. However, the 
experimental data show the opposite trend ; the stresses for the polystyrene beads 
are in fact somewhat higher. This difference between the predictions of the present 
and Jenkins & Savage analyses and experimental measurements is due to the 
incompleteness of these analyses in that surface friction of the granular materials has 
been ignored. Glass beads are brittle ; when they are sheared a t  high shear rates under 
high loads, the surface of each bead gradually is roughened as a result of the multitude 
of collisions i t  experiences and the minute fractures that can occur. In  such instances 
surface friction could become an important energy-dissipation mechanism. According 
to the theories of Ogawa et ad. and Shen, which account for the particles’ surface 
friction, the stresses decrease with increasing values of the particles’ surface coefficient 
of friction. Thus i t  is possible for the stresses associated with the glass beads to be 
lower than those of the polystyrene beads since the coefficient of friction of the glass 
beads is probably higher than that of the polystyrene beads. 

At e = 0.9 the shear stress predicted by the present theory and that of Jenkins & 
Savage (1983) passes through most of the experimental data, but the predicted normal 
stresses are somewhat higher than the measurements. Thus these two theories predict 
nearly the right magnitudes for the stresses. Also, it is seen that the small-R 
linearization is close to the more exact evaluation of the collision integrals for the 
higher values of e .  At the same value of e = 0.9, the normal stress predicted by Shen 
is very close to  the experimental data especially when v* = 0.64, but the shear stress 
differs considerably. Both shear and normal stress predicted by Ogawa et al. have the 
lowest magnitude and fall short by a large amount. The theories of Ogawa et al. and 
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FIGURE 9. Variation of the ratio of shear stress to normal stress with solids fraction v for the case 
of simple shear. Comparison of various theories with experiments of Savage & Sayed (1980). 

Shen are shown for a particular coefficient of friction of zero; if ,up =k 0 their stress 
predictions are reduced further. 

As complementary information, we may plot the ratio of shear to normal stress 
against solids concentration v as in figure 9. The stress ratio for the present theory 
may be found readily by dividing (3.15) by (3.13). Similarly from (3.47) and (3.48) 
the stress ratio from Jenkins & Savage (1983) is 

(3.51) 

From (3.22), (3.23) and (3.27) the stress ratio corresponding to the theory of Ogawa 
et al. is 

Also from (3.37) and (3.38) the stress ratio from Shen's theory is 

(3.52) 

(3.53) 

As shown in figure 9, all the above theoretical predictions fall below the experimental 
values. The present analysis and that of Jenkins & Savage yield predictions closest 
to the test results. The shear to normal stress ratios of Ogawa et al. and Shen are 
both about t of the experimental values when e = 0.9. One characteristic evident in 
figure 9 is that the stress ratios predicted by all of the theories except Shen's do not 
depend upon concentration v. The experimental stress ratio for the glass beads 
indicates a slight dependence on concentration, while the experimental stress rat,io 
for the polystyrene beads indicates a stronger dependence. 
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Finally, it should be pointed out that ,  in making the above comparisons with the 
experimental results, we have tacitly assumed that the conditions of no-slip and zero 
flux of fluctuation energy were achieved at the shearing walls of the test apparatus. 
Flow-visualization experiments in other flow situations indicate that the first 
assumption is reasonably accurate. The validity of the second assumption is hard to 
establish a t  the present time; a detailed analysis of wall boundary conditions 
analogous to the theoretical treatments described herein is required. 

3.3.5. Comparison with the Chapman-Enskog dense-gas theory 
Certain aspects of the present analysis and that of Jenkins & Savage (1983) were 

based upon the approach used in the Chapman-Enskog hard-sphere kinetic theory 
of dense gas (Chapman & Cowling 1970). The main departure initially suggested by 
Savage & Jeffrey (1981) is that  the forms for the one- and two-particle distribution 
functions were merely assumed to have simple but plausible forms; they were not 
derived as approximate solutions to  the Boltzmann equation as in the usual dense-gas 
approaches. I t  is of interest therefore to compare the present stresses with those given 
by the Chapman-Enskog theory. Taking only the part of the stresses that arise from 
the collisional transfer of momentum in correspondence to the present analysis, and 
expressing the results from Chapman & Cowling (1970) in the present notation, we 
obtain 

38.06 
6 5 

xo(v) = 1 +:v+4.5904v2, (3.56) 

In  the case of simple shear, V'u = 0, and the non-dimensional normal and shear 
where xo( v )  corresponds to the equilibrium radial distribution function at contact. 

stresses become 

38.06 
U + -  5 

(3.57) 

(3.58) 

These results were derived for perfectly elastic hard spheres. To make comparisons 
with the present analysis we take e = 1 and need only consider the first-term small-IE 
solutions; thus from (3.13) and (3.15) the normal and shear stresses are 

(3.59) 

(3.60) 

Comparing the expression for the stresses given by the two theories, one notes an 
obvious difference in the dependence upon v arising from the difference between xo(v) 
and g o ( v ) .  These two functions are plotted in figure 10; they differ by a large amount 
at high concentrations. Since go( v) is derived semi-empirically from computer 
simulations of molecular dynamics, i t  is expected that go(v) is more accurate than 
xo( v), especially a t  higher concentrations. For the purpose of comparison, we not only 
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FIGURE 10. Variation of equilibrium radial distribution functions go(v) and xo(v) with v. 
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FIGURE 11. Variation of non-dimensional normal stress with solids fraction v. Comparison of present 
theory with collisional contributions in Enskog dense-gas theory. - -, Chapman & Cowling (1970) 
using their function x o ( u ) ;  -, Chapman & Cowling (1970) replacing xo(v) with go(v) and present 
$3 theory using go(v). 
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FIGURE 12. Variation of non-dimensional shear stress with solids fraction v. Comparison of present 
theory with collisional contribution in Enskog dense-gas theory. - -, Chapman & Cowling (1970) 
using their function x o ( v )  ; , Chapman & Cowling (1970) replacing x o ( v )  with g o ( ” )  ; -, present 
$3 theory using go(v). 

used the expression for x,(v) as given by Chapman & Cowling to calculate their 
stresses, but also we replaced xo(v )  by go(v) in (3.57) and (3.58) to give a closer 
correspondence to  the present analysis. These two calculations of stresses are shown 
in figures 1 1  and 12 together with the stresses predicted by equations (3.59) and (3.60) 
of the present analysis. If x o ( v )  is used in the Chapman-Enskog theory, it is found 
that the normal stresses are less than those of the present theory. But, if x o ( u )  is 
replaced by go(v), their shear stress is quite close to the present one, especially a t  
concentrations of u = 0.2 and higher; the normal stresses are exactly the same. 

These comparisons show that the simple approach followed by Savage & Jeffrey, 
Jenkins & Savage and the present paper gives results for stresses which are quite close 
to the more formal and rigorous analyses used in the hard-sphere dense-gas theories, 
a t  least for the case of simple shear. 

3.4. Conclusion 
As a result of the present study we may draw a number of important conclusions 
which concern not only the present and past theoretical work but also bear upon the 
direction of future theoretical studies. 

1. While all of the analyses examined in $3.3 exhibit many of the same gross 
features of behaviour for R versus e ,  and for stresses versus R, e wnd v, there are in 
some cases significant quantitative differences between them. The theories of Shen 
(1981) and Ogawa et al. (1980) are more general in that they both consider surface 
friction and Shen considers interstitial fluid effects, but they do predict lower stresses 
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than those of the present analysis and that of Jenkins & Savage (1983). The reason 
for this is hard to isolate, but probably it is due to the cumulative effect of a number 
of approximations made by Shen and Ogawa et al. in describing the particle 
kinematics and in carrying out their statistical averaging. For the case of smooth, 
inelastic particles all the theories yield upper bounds for the value of R a t  e = 0 
ranging from about 2 to about 5. 

2. The asymptotic analysis of Jenkins & Savage (1983) based upon the assumption 
of small gradients (which correspond to 1 - e < 1,  and for the case of simple shear, small 
R) is found to yield predictions for the stresses that asymptotically approach the 
present analysis (which evaluates the collision integrals ‘exactly ’) as e approaches 
unity and are fairly close to i t  for e = 0 and when R > 1.  This is certainly not what 
one might have anticipated on the basis of the stress-versus-R curves presented in 
Savage & Jeffrey (1981), but it is a fortuitous result. It indicates that small-gradient, 
strong-fluctuation asymptotic analyses are adequate, a t  least for the case of theories 
for dry granular material. On the other hand, for cases where the interstitial fluid 
is important and acts to dampen the velocity fluctuations, typical values of R could 
well exceed the upper bounds described above (the theory of Shen (1981), which can 
include interstitial fluid effects clearly indicates such trends). For these situations, 
the asymptotic solution may well prove to  be inadequate, and the inclusion of 
higher-order terms is probably necessary. 

3. The present analysis and that of Jenkins & Savage (1983) predict stresses based 
upon reasonable values of e thak are fairly close to the experimental stresses 
measured in the annular shear-cell experiments of Savage & Sayed (1980). These two 
analyses also predict shear stresses for perfectly elastic particles in a simple shear flow 
that are very close to the collisional stresses given by the Chapman-Enskog dense-gas 
theory, and collisional normal stresses that are the same. Making similar comparisons 
for more general types of flow (for example, extensional flow) suggests that the use 
of the simple pair distribution function proposed by Savage & Jeffrey (1981) results 
in constitutive equations that approximate the more exact results of the Chapman- 
Enskog approach to  within factors of about 2. 

4. Although the theory of Jenkins & Savage (1  983) for general deformations is less 
accurate than the Chapman-Enskog approach, by comparison i t  is relatively simple 
and it may be expedient to extend this analysis to consider the effects of particle 
surface friction and rotary inertia. However, we note that the pair-distribution 
function of Savage & Jeffrey (1981) cannot describe the ‘kinetic’ or ‘diffusional’ 
contributions of the stresses that can be important a t  low concentrations. 

4. Hard-sphere, dense-fluid kinetic theory for nearly elastic particles 
The comparisons of the various analyses and experiments made in $ 3  suggest the 

development of a more detailed theory following the approach of either the 
Chapman-Enskog or the moment methods, which are based on the assumption 
(explicit or implicit) that gradients of the mean-flow properties such as velocity, 
temperature and bulk density are in some sense small. Such an analysis is now 
presented. As we have seen in $3,  the small-gradient assumption in the present 
context implies that the energy dissipated during a collision is small, and hence that 
the smooth particles considered here are nearly elastic (the coefficient of restitution 
e is nearly unity). We expect the analysis for inelastic particles to reduce to 
the standard Enskog results for dense hard-sphere fluids (Chapman & Cowling 
1970; Ferziger & Kaper 1972; Hirschfelder, Curtis & Bird 1954; Davis 1973) in the 
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limit as e+ 1. The resulting constitutive equations are bound to be fairly complex, 
and their use will present difficulties in the solution of any but the most simple of 
flow problems. Nevertheless, these constitutive equations, which are calculated by 
using distribution functions which have been determined in a systematic way. 
provide means to assess the accuracy of simpler, but more approximate, ad hoc 
analyses such as those discussed in 53 and in Jenkins & Savage (1983). 

4.1 . Analysis 
Rather than use the machinery described by Chapman & Cowling (1970), which relies 
upon the Boltzmann equation, we use a simple moment method based on the Maxwell 
transport equation (2.2) and (2.7)-(2.9). We follow the spirit of the approach used 
in the early work of Chapman (1916), which has been described in elementary terms 
for the dilute-gas case in the books of Present (1958), Guggenheim (1960) and Reif 
(1965). A related discussion of the relation between the Chapman-Cowling and 
Enskog procedure and a variational procedure has been given by Hirschfelder et al. 
(1965). The results obtained for the perfectly elastic hard-sphere fluids using these 
approaches in the first approximation correspond to  keeping the first terms in an 
infinite Sonine polynomial expansion for the singlet perturbation in the Chapman- 
Enskog theory. The remaining terms for these fluids have been found to alter the 
calculated numerical values of the viscosity coefficients and thermal conductivity by 
only a few percent. We anticipate similar effects for the slightly inelastic particles 
treated here. 

While the moment method applied here for the case of a dense system is 
conceptually quite straightforward, the detailed computations are lengthy and the 
likelihood of an algebraic error is not insignificant. The algebraic manipulations and 
integrations were done initially by hand. A program written in PL/l-FORMAC was 
developed to check the hand calculations. As a further check, the present results are 
compared with the standard hard-sphere dense-fluid results as e + 1. 

As usual we write the singlet distribution function f ( l )  in the form 

f (1)  = f ‘ ” ( l + $ ) ,  
where q5 4 1,  and 

n (c-u)2 
f (O)(‘ ,  c ,  t )  = - 

(SET): (-7) 
is the local equilibrium Maxwellian single-particle velocity distribution function. 
From the standard kinetic theories we anticipate that a good approximation to the 
perturbation $ is the trial function 

5 c2 

2 2T 2 2T 

q5 = a,CC:Vu+a2(---)C.VlnT+a3(~-~)C-Vlnn, 0 

where the traceless dyadic 
0 cc = cc-gc21 

(4.3) 

(4.4) 
and 

c= c-u.  

Note that we have reverted to the use of C to denote the peculiar velocity to 

The quantities a,, a2 and a3 appearing in (4.3) are found by satisfying various 
facilitate comparison with the standard dense-fluid theories. 

moment equations generated by (2.2) and (2.7)-(2.9). 
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The first two terms in (4.3) are of the standard form, but the last term is not present 
in the usual theories. The necessity for the third term in (4.3) becomes apparent when 
attempting to satisfy the moment equations. It occurs here because of our consideration 
of inelastic collisions, and it will be found that, fore = 1 ,  a3 = 0, as might be expected. 
The functional dependence of this third term upon Cis  evident from the scalar nature 
of and the necessary compatibility with definition for the mean velocity u = ( c ) .  

We make the Enskog assumption that the pair-distribution function 

f 2 ) ( r 1 ,  cl; rz,  c2; t )  = qo(a) f(l)(r--ak, cl; t ) f ( l ) ( r ,  c,; t )  (4.5) 

just prior to collision, and take the equilibrium radial distzribution function go(u) to 
be that due to Carnahan & Starling (1969) given by (3.3). 

The coefficient a, appearing in (4.3) may be determined by considering the case 
of Vu = e,e,du/dy, dufdy = const, T = const, and n = const (where u = (u, v, w)) 
and taking 1,9 = c, cy in (2.2) and (2.7)-(2.9). Similarly a2 and a3 may be determined 
by considering u = 0, and T and n to have gradients in the x-direction and taking 

where 

(4.6) 

(4.7) 

(4.8) 

(4.9), (4.10) 

5m( TIE)$ 75m(T/n)t 
1 6a2 64u2 7 = $ ( l + e ) ,  ,u = , A =  . (4.11), (4.12), (4.13) 

The expressions for p and A may be identified as the shear viscosity and thermal 
conductivity for perfectly elastic particles (e  = 1 ,  r,~ = 1 )  a t  dilute concentrations. They 
check with the usual first approximation results from the hard-sphere kinetic theory 
(see Davis 1973). The symbolspi and hi denote the corresponding shear viscosity and 
granular thermal conductivity for the case of inelastic particles at dilute 
concentrations. 

Using (4.3)-(4.13) in (2.8), (2.9) and (2.16)-(2.19) we can calculate the constitutive 
equations for stress, translational fluctuation-energy flux and collisional rate of 
dissipation per unit volume. The kinetic and collisional contributions to the total 
stress tensor p are 

(4.14) 

(4.16) 
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The total stress tensor may be written as 
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P = Pk + p c  = (pT(' + 47v&) - T/'$) 'ul ' 
where 

256,uv2g0 
rub= 5= (4.18) 

is the bulk viscosity for perfectly elastic particles and 7pb is that property for 
inelastic particles. 

The kinetic and collisional contributions to the vector flux of translational 
fluctuation kinetic energy are 

d 
q k  = -'{ [1 +7V2(47- 3) vg,] vy+9(27- 1 )  (7 - 1) (V 'go)  

go 

16 q =-A 
C 127h' 5 { [ l  +Yq2(47--3) vgo+15TF (41 - 337) 7vgo] VT 

(4.20) 
d 

+%(27- 1 )  (7- I)dy(Vag,);Vn}, 

and the total ' thermal ' flux vector is 

1 64 
90 2511 q = qk+qc = ( l + ~ v g , ) [ 1 + ~ z ( 4 ~ - 3 ) v g , ] + - ( 4 1 - 3 3 3 ~ ) ( ~ ~ g o ) 2  V7' 

4 d T 
-- (1  + Y i p g o )  yq(27 - 1 )  (7 - 1 )  - ( v2go)  - Vn. (4.21) 

Sn dv n 
Since v = 3cnu3, then 

1 1 
-Vn = - V v .  
n V 

(4.22) 

When we consider the limit e + 1 ,  + 1 corresponding to perfectly elastic particles, 
(4.14)-(4.21) reduce to  the classical results for dense hard-sphere fluids corresponding 
to the first terms in the Sonine polynomial expansions (Chapman & Cowling 1970; 
Ferziger & Kaper 1972; Hirschfelder et al. 1954; Davis 1973). 

The expression for energy flux contains a term proportional to Vv.  Similar 
' anomalous ' terms dependent upon density gradient have been noted previously in 
dense-gas kinetic theories and have been discussed by Dahler & Theodosopulu (1975). 
It should be noticed, however, that  the term also contains the factor q - 1 which has 
been assumed to be small. 

The analysis has been based on the assumption of small mean-field gradients, which 
implies small inelasticity. The expression for the collisional rate of energy dissipation 
per unit volume carried out to the same order of approximation as the expressions 
for stress and energy flux is 

(4.23) 

which vanishes as e + l .  I n  (4.23) the ordering of l - e  and the non-dimensional 
gradients of mean-flow properties (analogous to R) has been chosen to be consistent 
with the simple shear flow as in (3.1). 
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FIGURE 13. Non-dimensional shear stress versus solids fraction for case of simple 
present theory, $4;  --, Jenkins & Savage (1983). 

shear. ~ 

4.2.  Simple shear $ow 
It is interesting to compare the predictions of the above theory for the case of simple 
shear flow duldy, having uniform translational granular temperature T and bulk 
density p,  with the predictions of the simple ad hoc approach described in $3. The 
analysis just developed incorporates the kinetic contributions to the stresses. Because 
of the form chosen for f ( z )  in the approach of $3, i t  was not possible to determine 
the kinetic stresses in that analysis. It transpires that the presence of the kinetic 
stresses results in some interesting phenomena. Following the procedure used in $3, 
the fluctuation-energy equation reduces to (3.1) and we obtain the following 
expressions for the shear and normal stresses, Rand the ratio of shear to normal stress : 

(4 .24)  

where 

(4.26) 

(4.27) 

(4.28) 
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V 

FIGURE 14. R’on-dimensional normal stress versus solids fraction for the case of simple shear. 
-, present theory, $4; - -, Jenkins & Savage (1983). 

4.2.1. Dependence of stresses upon v 
~ ~ ( d u / d y ) ~ ]  and 

pyy/[pp ~ ~ ( d u . / d y ) ~ ]  versus v predicted by the above analysis with the corresponding 
predictions of Jenkins & Savage (1983) and the analysis of $3.1 which were based 
upon the ad hoc assumption for the pair distribution function f (2) and which consisted 
of collisional stresses only. When only the collisional-stress contributions are 
considered, the stresses increase in monotonic fashion with concentration. When the 
kinetic-stress contributions are included as in the present $ 4  analysis, the stresses 
have high values at low concentration. The stresses decrease with increasing concen- 
tration to a minimum, and thereafter increase with increasing concentration and 
follow the same trends as the collisional stresses alone. This kind of behaviour a t  low 
v may seem implausible, but it can be explained simply in physical terms as follows. 
As v decreases, the contributions of the collisional stresses becomes a smaller fraction 
of the total stresses and the kinetic contribution becomes dominant. Consider the 
shear rate duldy to be fixed as v decreases. From the usual arguments for Maxwell’s 
law for a dilute gas (Jeans 1967, p. 164), the shear viscosity and thus the shear stress 
will be independent of density. However, the dissipation y ,  which is due to collisions, 
is seen from (4.23) to depend upon bulk density p (or solids fraction v). The dissipation 
y has a stronger dependence on granular temperature T than does the shear stress. 
Therefore, when v is decreased, T must increase to provide the dissipation required 
for the energy balance (3.1). Thus the increase in T causes the shear stress to increase 

Figures 13 and 14 compare the non-dimensional stresses Ip 
za! 
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as v is decreased while keeping shear rate fixed. Note that in figures 13 and 14 the 
stresses increase without limit as the concentrations v+O. This defect is a result of 
the assumption of a constant coefficient of restitution in the model. 

4.2.2. An instability mechanism 
The simple shear flow just considered is unstable for small values of u where 

i3ppYy/av < 0. If i3p,,/av < 0 a local perturbation which decreases v will cause an 
increase in the dispersive pressure p,,, which will cause the material to dilate even 
further. This physical argument may be supported by a simple analysis. Consider a 
perturbation to the simple shear flow such that the mean-flow variables have the forms 

P(Y,t) = PpV(Y4 = Po+Ppv’(YA (4.29) 

u(y,t) = uo(y)+u’(y,% (4.30) 

(4.31) 

(4.32) 

where the basic flow density po and granular temperature T, are constants and the 
primed quantities are small perturbations which are functions only of y and t .  
Equations (4.29)-(4.32) are substituted into the mass-, momentum- and energy- 
conservation equations (2.13)-(2.15). For the present purposes we need only consider 
the first-order equations for conservation of mass and linear momentum in the 
y-direction : 

To first order we take 
1 aP 

P p  av 
p = -2 = const 

and eliminate v’ from (4.33.) and (4.34) to obtain 

Writing 

(4.33) 

(4.34) 

(4.35) 

(4.36) 

(4.37) 

we find the flow is stable or unstable depending upon whether p = (l /pp) apUl//av 
is positive or negative. 

This result suggests that  computer simulations of granular Couette flows of the kind 
performed by Campbell & Brennen (1982) may never converge to a steady state for 
values of v less than some critical value if e is assumed constant. I n  fact these kinds 
of stability problems have been alluded to by Campbell (1982). I n  his numerical 
simulations of flows of disks down inclined chutes, under certain conditions he was 
able to get flow convergence only by introducing an e that was an exponentially 
decaying function of particle impact velocity rather than taking i t  to be a constant 
as has been assumed in the present paper. This kind of dependence is consistent with 
the experimental dat>a collected in Goldsmith (1960) and with the physical picture 
of how e varies with the extent of plastic deformation incurred during a collision. 

9 F L M  
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R 
FIGURE 15. Variation of characteristic mean shear to fluctuation velocity ratio R with coefficient of 
restitution e for the case of simple shear. -, present theory, $4; --, Jenkins & Savage (1983). 
(1983). 

V 

FIGURE 16. Variation of characteristic mean shear to fluctuation velocity ratio R with coefficient 
of restitution e for the case of simple shear. -, present theory, $4;  --, Jenkins & Savage (1983). 

4.2.3. Variation of R and dynamic friction angle q5D with v and e 
Figures 15, 16 and 17 show the parameter R plotted versus v ,  e versus R, and 

the ratio of shear stress to normal stress lpzyl/pyu = tan&, plotted versus v. The 
analyses of $3.1 and of Jenkins & Savage (1983) yield expressions for R and q5D that 
depend on e but are independent of v. The present analysis exhibits a v-dependence 
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FIGURE 17. Ratio of shear to normal stress tan% versus solids fraction v for the case of simple 
shear. -, present theory, $4;  --, Jenkins & Savage 1983; 0 ,  glass beads; 0, polystyrene beads 
(Savage & Sayed 1980). 
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FIGURE 18. Variation of normalized collisional distribution function with angle 9 for e = 0.8 
and = in. -, present theory, $4;  --, Jenkins & Savage (1983). 

for both R and &,. The curves relating e and R shown in figure 15 are similar to those 
corresponding to all the other theories discussed in $3. The curves of R versus v are 
similar to those obtained by Campbell & Brennen (1982) in their computer simulations 
of idealized disk-like granular materials which showed an increase in R with 
increasing v and a decrease in R with increasing e .  

9 2  
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The ratio of shear to normal stress was found in the computer simulations of 
Campbell & Brennen to decrease with increasing v and increasing e .  The results of 
the shear-cell experiments of Savage & Sayed (1980) also exhibited a decrease in tan I$,, 
with increasing v. The present predictions show a behaviour similar to the simulations 
of Campbell & Brennen for small v, but they show an increase in tan #d with increasing 
v for v > 0.3. The reason for the discrepancy is no doubt a failure of the present model 
a t  large v. Campbell & Brennen observed that as concentration was increased there 
was a greater tendency for the particles to line up in distinct shear layers. Collisions 
tend to become restricted to ( a )  glancing collisions between particles in adjacent layers 
where the ‘tops’ and ‘bottoms’ of particles hit, and ( b )  collisions between particles 
in the same layer involving the ‘fronts’ and ‘backs’ of particles. These kinds of 
collisions are ineffective in developing shear stresses, but can develop normal stresses 
perpendicular to the shear planes. Thus one would expect that  the ratio of shear stress 
to normal stress would decrease with increasing v. The present theoretical model 
cannot produce the spike-like collisional distribution functions caused by the layering 
observed by Campbell & Brennen. 

4.2.4. Collisional frequency distribution 
For the present case of simple shear flow, i t  is interesting to examine how the 

collisional frequency per unit area is distributed over the collision sphere. Following 
Chapman & Cowling (1970, $5.2) ,  we may express this in integral form as 

(4.38) 

By using the pair velocity distribution function given by (4.1)-(4.6), we find 

For the equilibrium case (in the absence of shear), the collision frequency would be 
isotropic and of the form 

Dividing (4.39) by (4.40), we obtain the normalized collision frequency 

(4.40) 

(4.41) 

In  a similar way we obtain the normalized collision frequency from the theory of 
Jenkins & Savage (1983) to be 

(4.42) 

Comparing (4.41) and (4.42), one sees that the normalized collisional frequency 
distribution of the present theory depends upon the solids concentration v through 
the function a,  (see (4.6)), whereas that given by the theory of Jenkins & Savage is 
independent of v. Equations (4.41) and (4.42) are plotted in figure 18 for the case 
of e = 0.8 with the angle Q, taken to  be in, i.e. we have shown collisions occurring in 
the plane perpendicular to the shear surfaces and parallel to the mean flow u. In  the 
expression (4.42) from the Jenkins & Savage theory, 01 was chosen to be unity. The 
collisional anisotropies from both theories have a sinusoidal dependence upon 9, 
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indicating that collisions are more frequent on the ‘ upstream ’ quadrant than on the 
‘ downstream ’ quadrant of the collision sphere. The anisotropy of collisions predicted 
by the theory of Jenkins & Savage is more pronounced than that given by the present 
theory ; this results in collisional shear stresses that are slightly higher than the total 
(collisional plus kinetic) shear stresses predicted by the present theory shown in figure 
13. Fortuitously, because of the form chosen by Jenkins & Savage (1983) for their 
pair-distribution function f (2) ,  the differences in the stresses are not as great as might 
be expected from the comparison of the collisional frequency distribution functions. 
It is also worth noting that the collisional frequency distribution function based upon 
the pair velocity distribution function of Jenkins & Savage becomes negative near 
9 = an for e = 0.8. While negative values of Y(9,q) are physically meaningless, the 
stresses and other such quantities have reasonable values since they are calculated 
by ‘averaging’ over the collision sphere. 

5. Concluding remarks 
In  the present paper we have presented two kinetic theories for the rapid flows of 

cohesionless granular materials and applied them to examine in detail the problem 
of simple shear flow. The first analysis was based upon the use of the ad hoe proposal 
of Savage & Jeffrey (1981) for the collisional pair-distribution function f@) and was 
intended for particles of arbitrary inelasticity. The second approach determined f (2) 

as part of the overall analysis, but was intended for nearly elastic particles. On the 
basis of extensive comparisons with various other theories and experiments i t  was 
found that the simple approaches of $3.1 and Jenkins & Savage (1983) which make 
use of the ad hocf@) give results which a t  higher concentrations are surprisingly close 
to those of the more detailed approach developed in 94 of the present paper. The 
analysis in $4 was able to distinguish some of the finer details of the overall behaviour 
and is no doubt more appropriate a t  low concentrations. Although the analyses based 
upon the ad hoc f@) of Savage & Jeffrey (1981) give fairly good estimates of the 
‘ collisional ’ contributions to the constitutive equations they cannot predict most of 
the ‘kinetic’ contributions. 

There are a number of ways in which the present analysis in $4 could be extended. 
The particles have been assumed to be smooth, uniform spheres. The effects of surface 
roughness, particle spin and rotary inertia are presently under investigation. Shen 
(1981) has already made an attempt to incorporate the effects of the interstitial fluid 
into a granular-flow theory, and i t  certainly would be worthwhile to  try to  treat these 
effects within the context of the present analyses. 

The appropriate boundary conditions for flows adjacent to solid boundaries and 
‘free ’ surfaces require further investigation. For example, it is of interest to determine 
how velocity slip and the granular temperature and its gradient might depend upon 
the wall roughness size and inelasticity. It should be possible to examine such 
problems in the spirit of the present analyses. 

Further efforts should be devoted to the inclusion of rate-independent stress 
contributions which can result from enduring contacts between particles. Such 
stresses were neglected in all the above theories which in effect assume instantaneous 
binary collisions between particles. These effects are evident in some experimental 
results a t  high concentrations (Savage & Sayed 1980) which depart significantly from 
the ( shear-rate)2 dependence predicted by the collisional momentum-transfer theories 
mentioned in the present paper. 
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